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Abstract—Presented in this paper is a boundary element method which enables the simulation of
dynamic crack propagation under arbitrary loading conditions and without any a priori assumptions
regarding the crack path. The direction and speed of crack advance are controlled only by a fracture
criterion. Fast crack growth is investigated in an unbounded linear elastic body under plane strain
or longitudinal shear. For in-plane deformation under mixed mode loading the influence of crack
closure on the computed crack path is considered by solving the related contact problem.

The starting point is a non-hypersingular time-domain traction boundary integral equation. A
collocation method in conjunction with a time-stepping scheme is applied to solve the integral
equation numerically. The accuracy of the numerical method is checked by comparison with
analytical solutions available for simple situations. Some examples of curved cracks propagating
with variable speed in inhomogenous stress fields serve to illustrate the versatility of the method.
© 1997 Elsevier Science Ltd.

1. INTRODUCTION

Several numerical studies of dynamic crack propagation have been published during the
past two decades. But nearly all of them were restricted to a prescribed straight crack path.
However, in reality cracks are often curved and they may kink or branch. Therefore, within
the scope of a realistic model of these fracture processes the temporal and spatial evolution
of a crack should be controlled only by a physically meaningful fracture criterion. Thus, the
initial boundary value problem (IBVP) describing dynamic crack propagation is generally a
free boundary value problem, since a part of the boundary varies with time and has to be
determined from the analysis.

Linear elastodynamics which to some extent is adequate for brittle materials allows
the formulation of IBVPs by time-domain boundary integral equations (see e.g. Eringen
and Suhubi, 1975). Their numerical treatment by boundary element methods (BEMs) in
contrast to methods of domain discretization ( finite elements, finite differences) offers the
advantages of a reduced dimension of the problem and an easy representation of arbitrarily
curved and moving boundaries (crack paths). Nevertheless, in the few existing works using
a BEM approach, these advantages have hardly been exploited. Standard BEMs can be
applied within the subregion technique (Mettu and Kim, 1991 ; Gallego and Dominguez,
1992), but it is restricted to fixed crack paths and additional numerical expense results from
introducing ficticious boundaries. For an efficient treatment of arbitrary crack paths it is
necessary to represent the crack by a singular surface in the interior of a body as was done
for example by Hirose and Achenbach (1991) and Koller ez al. (1992). But the discretization
chosen in Hirose and Achenbach (1991) requires some self-similarity and is not suited to
model the growth of curved cracks. To our knowledge, the work of Koller er al. (1992) is
the only approach by a BEM general enough to treat curvilinear dynamic crack growth. In
their paper the propagation of a longitudinal shear crack in an unbounded domain has
been investigated up to the formation of a first kink, indicating instability of the initially
straight crack path.

The aim of our paper is to present a time-domain boundary element method for the
simulation of rather general dynamic crack propagation problems. No restrictions are
imposed on loading conditions or the shape of the developing cracks. Therefore, crack
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closure and its influence on the fracture process has also been taken into account. In Section
2 we start with the derivation of the underlying boundary integral equation (BIE) for the
unknown displacement discontinuity along a single crack which is growing with time in an
unbounded domain. BIEs of the type used here are non-hypersingular and have been
introduced by Zhang (1991) for the treatment of dynamically loaded stationary cracks. For
simplicity we consider only two-dimensional problems of plane strain and longitudinal
shear. Similar to the approach of Koller ez al. (1992) the curvilinear crack is discretized by
straight elements of constant length the number of which increases with time (Section 3).
The unknown displacement jump is approximated by spatial and temporal splines. In each
time step the BIE is solved on the current crack by a collocation method. To avoid a
kinematically inadmissible penetration of the crack faces, in case of crack closure a contact
problem has to be solved additionally. Via a penalty method the system of linear algebraic
equations arising from the BIE is then extended to a nonlinear system and solved iteratively.
The explicit time-stepping scheme resulting finally is typical for time-domain BEMs (see
e.g. Zhang and Achenbach, 1989 ; Zhang and Gross, 1993). A fracture criterion connecting
the dynamic stress intensity factors (SIFs) at the moving crack tip with the material’s
fracture toughness is applied in Section 4. In each time step it is evaluated to determine the
direction and the speed of crack advance. Crack growth is modeled by adding new elements
of constant length to the moving crack tip. As a consequence, no remeshing procedure is
necessary, but the fracture criterion has to be discretized appropriately. ‘Moving boundary
elements’ as applied by Gallego and Dominguez (1992) to describe the propagation of
straight cracks seem not to be suited for curved cracks and would cause additional numerical
expense through remeshing. Numerical results to test the accuracy of the method and to
demonstrate its capability are presented in Section 5. Finally, conclusions are summarized
in Section 6.

2. NON-HYPERSINGULAR TIME-DOMAIN BIE FOR PROPAGATING CRACK

From the basic equations of linear elastodynamics (Achenbach, 1973 ; Eringen and
Suhubi, 1975) and zero initial conditions the following two-state ‘conservation integral’
can be derived (Zhang, 1991):

(2) 1 ! 2) , pll 2 1 - 2) l 1 2
J {o}; *(ut(.j)nk —ulin) +pul? * iV n —ufy) + o] 'n;}d4 =J P[P *ul + 110 » uZ)dv.
2B 8

(1

Here p, u;, g, and f; denote the mass density and the components of displacement,
stress, and body force, respectively, and B represents an arbitrary volume enclosed by its
boundary ¢B with exterior unit normal n,. Superscripts (1) and (2} denote two independent
‘elastodynamic states’ (of the same body), that means solutions of the field equations with
zero initial conditions. Superscript dots and (.),; indicate derivatives with respect to time
and the spatial variables x,. An asterisk () denotes convolution with respect to time and
the conventional summation rule over double indices is applied.

The integral identity (1) can be regarded as an alternative to the classical reciprocal
theorem of elastodynamics (Betti-Rayleigh theorem ; see e.g. Achenbach, 1973; Eringen
and Suhubi, 1975), both being valid under the same conditions. As is well known, traction
boundary integral equations (i.e. tractions given, displacements unknown) derived from
the Betti-Rayleigh theorem become hypersingular when applied to cracks. To avoid this
source of analytical and numerical difficulties Zhang (1991) proposed to take eqn (1) as
the starting point instead. The succeeding steps which are the same as in the conventional
approach and lead to a non-hypersingular BIE are outlined briefly. The first state in eqn
(1) is chosen to be the unknown fields u; o, with f{" =0, and the second state is the
fundamental solutions (elastodynamic Green’s functions) u§(x,y,—1) and oj(x,y, {—1)
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due to an impulsive point force pf\?! = 3(x —y)é(t—1)d, where §(.) denotes Dirac’s delta-
distribution and d, is the Kronecker symbol. Insertion of the two states into eqn (1) gives
the following representation formula for the displacement gradient in the interior of B:

u,(x,t), xeB\0B
J. {oG x(n8,— ;0 ur —u, * oy m+ pul =i n dA(y) = { }
éB

0, xeR*\(BUJB)
@)

The boundary data u~ and o,; are the one-sided limits of the fields approaching 0B
from its interior. Note that the spatial derivative of u contains only a contribution
tangential to éB. Adding to eqn (2) the representation formula for u;, in the exterior
domain (obtained in the same manner) and applying Hooke’s law leads to the following
representation formula for stress in the full space:

0,g(X, 1) = —Cqu,J {pud * Atin, + 05y %(n0; —n0,) Au; —uf, x Aoyn,}dA(y), xeR\0B.
éB

©)

Here C,,, represents the elasticity tensor and A¢ = ¢ — ¢~ denotes the jump of the field
quantity ¢ over 0B. The state of stress a,,(x, 7) resulting from discontinuous displacements
and/or tractions along the arbitrary closed surface ¢B is sometimes called the scattered
field.

A growing crack can generally be described by an open surface I'(¢) along which the
displacement field is discontinuous and the stress vector is continuous (it is zero for an
open crack). Taking I'(z) as a part of 0B, whereas all the fields must be continuous along
the remainder of ¢B restricts the spatial integration in eqn (3) to the crack and makes the
last term vanish.

The initial boundary value problem to be treated here is that of a crack growing with
time in an unbounded domain. Initially the material is at rest and for ¢ > 0 it is subject to
some given loading, for example due to incident waves, represented by a stress field
oy (X, 1). The crack itself is assumed to be free of traction. Superposition of the scattered
field with the given loading, applying the traction free boundary condition along I'(¢)

{0,0(x, D)+ 0l (x,0)}n,(x) =0, xel'(1)

and taking the limit process x — I'(?) yields the following BIE for the unknown displacement
jump along I'(7)

t

T (X, 1, (X) = Cpgumy(X) §r ) J {puii (X, ¥, 1 —T)Adi,(y,T)m (y)
(r

+ Jff-z(x, Y, t—1)(n(y)0, — n;(¥)Ci ) Au(y, T)}df dA(y), xeI'(r). D

The integral over I'(¢) in eqn (4) does not contain any hypersingularities, it exists in
the Cauchy principal value sense. But it contains derivatives of the unknown function and
(4) therefore, strictly speaking, is an integro-differential equation. Of course, at any time 7
the displacement is discontinuous only along the crack contour I'(7) existing at that instant.
This fact later has to be reflected in an appropriate spline approximation of Au,(y, 7).

Derived under the assumption of traction free crack faces BIE (4) also holds in the
case of crack closure when the additionally acting crack face pressure is formally included
in the loading o}y (x, f). Of course this contact pressure is unknown and has to be determined
from the condition of vanishing material penetration (see Section 3.2).
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Fig. 1. Growing crack in 1,2-plane.

In the following we will restrict the analysis to two-dimensional problems and one-
sided propagation of the crack. It then can be described by a curve I'(¢) with arc length s,
measured from the fixed crack tip (Fig. 1). The BIE (4) then reduces to

t

U;’}](X, [)nﬂ(x) = Cz[iziz:nﬂ(x) §[‘(r)f

0

{pui (X, ¥, 1 — DALY, T)n(y)

0Au,(y, 1)

;0% (X, y,1—1
+e.; (X, Y ) as

}dt ds(y), xeIl'(v) (5)
in plane strain and to

!

agnﬂ(x, Dng(x) = ung(x) §r( )J

0

{pu,% (X,y, 1 —1)Ad;(y, T)ng(y)

W}dr ds(y), x.el(n (6

+e}‘ﬁ0-gi}'3(xﬂ y. t—'[') a

in longitudinal shear. Here e , denotes the two-dimensional permutation symbol and u is
the shear modulus. The 2-D Green’s functions are given in Appendix A.

3. NUMERICAL SOLUTION PROCEDURE

3.1. Boundary element method and time-stepping scheme

To discretize the space-time domain of integration in BIEs (5) and (6), equidistant
time steps Az are chosen for the current time ¢ and the past t appearing in the time
convolution:

t—1,=mAt, t—o1,=nAt, n=0,... ,m
The crack at time t,, is approximated by an open polygon

E(m)

() > T(,) = UL,

consisting of elements I', of constant length Ay and nodal points y, (¢ =0, ..., E(m))
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(Fig. 2). The number of crack elements E(m) increases with time (m) since crack growth is
modeled by adding new elements to the moving crack tip.

The unknown crack opening displacements Aw; are approximated using continuous
piecewise linear temporal and piecewise continuous spatial interpolation functions

m  E(n)
Auy(y, 1) = Zl Y, DNt Ho(¥)g.(y) (7
n=1e=1
with
1 | T—nAt| T (= 1.0+ 1]
-, —e€ln—1Ln
(1) = At At ®)
0, otherwise
1
=5 L (=2 =+ DANH(t — (n+ DA
i= ~1
and
9’ re . - .
H, (¥)g.(y) = {gE(Y) ve . (H() = Heaviside function). &)
0, otherwise

The unknown coefficients ¢} are the displacement jumps at the element midpoints at
discrete times 1,. To describe the proper asymptotic behaviour at the crack tips (r - 0)
‘square root’ shape functions

9.y) ~ /r, r: distance from crack tip (10)

are used on the first two elements behind each crack tip, whereas on the remaining ‘inner’
elements g.(y) = 1.

The spatial shape functions at the moving crack tip also depend on time, when
expressed in global coordinates y and the location a(t) of the crack tip at time 7:

7.() ~ r=/lam -yl

Strictly speaking this has to be taken into account when performing the time differentiation
of eqn (7) and the time convolution as was already mentioned by Gallego and Dominguez
(1992). But being confirmed by our numerical results we neglect this time dependence by
regarding the crack tip motion as a series of discrete locations :
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9:0) ~ /r=/la@)—y| for yeI(z,) and telt, i Tpil. (11)

This is in consistency with modeling crack growth by adding new elements at discrete
instants of time.

To solve the BIE approximately, the element midpoints x* (d = 1, ..., E(m)) on the
current crack I'(,) and the temporal nodal point 7,, are taken as spatial and temporal
collocation points which correspond to the polynomial degrees of the chosen interpolation
functions (8) and (9). With auxiliary functions V(v ; x, m, n, i) and Z,,.(y ; X%, m, n, i) result-
ing from the analytical evaluation of the time convolution (see Appendix B) the collocation
method applied to BIE (5) leads to the following system of linear algebraic equations

(x m Em 2

(xd) - Z Z Z ¢ne «ﬁér B( €. Z ( 2)(1 i

n=le=1lv=1] ,-_1

oyt = TET )

x ﬁ( J [Vm(y ;X% m,n, DT (Y)H, (¥)9.(y)

m E(n) 2

1
+—x"—1 Z..(y; x4 m,n, l) L (H, (y)ge(y))]ds(y) Y3 N grane. (12)

Iy— n=le=1v=1

Here 1, = e,sn; denotes the unit vector tangent to the crack and ¢y is the shear wave velocity.
The integral over ¥,,(.) is only weakly singular at the wave fronts | y —x?| = ¢, zAt(m—n—i),
whereas the second part has to be evaluated in the Cauchy principal value sense (see €.g.
Zhang and Gross, 1993). In the case of longitudinal shear BIE (6) leads to an analogous
system of equations. Differentiation of the discontinuous spatial interpolation functions in
eqn (12) has to be understood in the distributional sense with (d/ds)H(s) = (s):

d dg.
&F(rm) v a;(H"(Y)gf(Y)) ds(y) = §I“, e dg ~[ gv(y)]y =Y. (13)

The matrix elements 4A7% in eqn (12) represent the influence of the displacement jump
component v on element I', at a former time 7, on the stress vector component « at
collocation point x“ at the present time 1,,. The respective matrices have a special structure
determined by the hyperbolicity of the field equations, the chosen interpolation functions,
and the collocation method, such that

Amd % 0 only for (14)
Decomposing system (12) into
m—1 E@n) 2 Em) 2
o= L X AEGr+ Y Y Anagl (15)

n=1le=1v=1 e=1v=1

leads to the following time-stepping scheme

E(m) 2 m—1 E@n) 2 )
) zlu:z:rl(od:d— ) A:;-:w;f) 16)

n=1 j=1y=1

from which the coefficients ¢ unknown at current time ¢, can be computed. The right
hand side of eqn (16) consists of the given loading and a contribution from the past (n < m).
In contrast to the situation of a stationary crack (Zhang and Achenbach, 1989 ; Zhang and
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Gross, 1993) here the matrices (47%) depend on m and n not only through the difference
m—n (time-translation invariance, see Appendix B) but also through the temporally grow-
ing number of elements E(n) and collocation points E(m). Thus, in each time step (m) a
matrix element A7% has to be computed if

n=1 or ez En)—2 or d= E(m).

Otherwise its value is known from a previous time step. Because of condition (14) the
matrices to be inverted in eqn (16) (m = n) are banded. Furthermore, for Az < Ay/2¢, they
consist only of 2 x 2-blocks along the ‘diagonal’ e = d, since waves emitted from one element
(and traveling with velocities ¢, > ¢r > ¢g) do not reach the midpoint (collocation point)
of a neighbouring element during Arz. So, in the latter case the two components of the
unknown displacement jump on each element depend only on the components of the right
hand side of eqn (16) on the same element. Within the scope of the numerical procedure
presented here the spatial and temporal element lengths Ay and Ar are subject to certain
restrictions mostly based on numerical experiments. To ensure a good resolution of short-
time effects it is necessary to choose At < Ay/c.. But too small values of Ar may cause
instabilities in the solution at large time as was already mentioned by Zhang and Achenbach
(1989).

3.2. Contact problem

For in-plane deformation and arbitrary loading it may happen that a crack closes.
Then the crack faces are no longer free of traction, but an additional contact pressure acts
as a ‘constraint force’ to prevent the displacement jump normal to the crack from being
negative (material penetration). This contact problem can be solved via a penalty method.
For this purpose the a priori unknown contact pressure is formally considered to be part
of the given loading, leading to the following extension of eqn (15) (no summation over d)

E(m) 2 m—1 E@ny 2
Y ¥ Antgr = oY Y Y A a7
e=1v=1 n=1e=1v=1

The contact pressure p™ at time t,, and collocation point x? is assumed to be pro-
portional to the kinematically inadmissible material penetration on element I', with a
penalty parameter ¢, much bigger ( x 10%) than the elastic stiffnesses contained in A7 :

2

P = (1 rt 1 —7), ¢l =3 ¢vnl. (18)

v=1

Thus, the contact pressure is only nonzero when ¢ the displacement jump normal to the
crack is negative. With p™ inserted, eqn (17) becomes a system of nonlinear algebraic
equations which is solved iteratively by a Newton method. The iteration is started (only if
necessary) using the solution obtained under the assumption of an open and traction free
crack. Due to the bilinearity of the stiffness the method converges in two steps.

As already mentioned, for small time steps Az < Ay/2¢, the system (15) or (17)
decouples. That means, a contact pressure acting on one element only influences the
solution ¢ on the same element. From the condition that the material penetration vanishes
the pressure on each element can be computed exactly by solving only a 2 x 2-system.

Throughout this work crack face contact was assumed to be frictionless, but taking
into account a frictional stress depending on the contact pressure would produce no
difficulty.
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4. FRACTURE CRITERION AND MODELLING OF CRACK ADVANCE
From the computed displacement jumps near the running crack tip the dynamic stress

intensity factors (SIFs) are determined as functions of time and the crack tip speed a
(Freund, 1990)

4 —(1403)? t
Ky(r; a) = 2t UHET iy A0
4oy (1 —o7) A 4
4 — (1423 —  Aulr,t
Ku(t; d) U A (+21) u\/2nlim—~u (r, 1)
dar(1 —a3) =0 w/;
o — . Aus(r,t ) a\’
Ku(t;a) = —Tu\/ 2nlim uy(r. ) with o= [1— (——) ) (19)
4 r=0 NE LT

Here Au, and Ay, denote the displacement jumps normal and tangential to the crack in case
of inplane deformation and r is the distance from the crack tip. Because of the \/r-crack
tip shape functions (10) the SIFs depend only on the coeflicients ¢™#"" on the crack tip
element. From energy considerations it can be shown (Freund, 1990) that the crack tip
speed is limited by the Rayleigh wave speed cg for inplane deformation and by the shear
wave speed ¢y for longitudinal shear. The SIFs vanish when these limits are reached.

The SIFs enter the representation of the singular stress field at the moving crack tip

(Fig. 1) from which the following components will be needed for the fracture criterion

1 -
Opo(r @, 15 4) = /——2—{(K[(t; AT a)+ Ky )Z (@ a))sing
RV nr

+ (K (1; Zh (@ a)+ Ky (15 )XY, (@ d)) cos’ e

—(Ki(1; )Z) (@1 a) + Ky (1 a)EIII'Z'((P : d@))sin 2(0} (20)
K ;d

O3, 9,15 d) = M(En(tp ;a)cos o — Ly (@ d)sing). 21
V 2nr

The universal functions (¢ ; &) can be found in Freund (1990) eqns (4.3.11), (4.3.24), and
(4.2.17).

Here we employ the fracture criterion of Erdogan and Sih (1963). It states that crack
advance will take place in the direction ¢, of maximum circumferential stress o,,, when this
stress reaches the same critical value as in pure mode |

(22)

=0 for a>0
maxe,,(¢: K, Ky) —0,,(¢ = 0:K;,)

<0 for a=0{

For a propagating crack the value of 4 is such that the equality holds. The critical stress is
represented by the dynamic fracture toughness K. = K, (@) which as a function of crack
tip speed has to be determined experimentally. For mode 111 crack propagation the fracture
criterion reads

(23)

=0 for a>0
maxos,(@; Kiyy) — 03, (Ki,)

<0 for a=0}|

Similar to the approach of Koller er al. (1992), crack growth is modeled by adding a
new element of constant length Ay to the moving crack tip whenever condition (22) or
(23) is violated. This can take place only after some time steps As have passed, because
a<cg <cr<co <Ay/Ar. Thus, the crack tip moves by discrete jumps at times ¢, . 4.,,.- -
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Fig. 3. Discrete modelling of crack tip motion.

Figure 3 shows the continuous motion of the crack tip and its discrete approximation. It
can be seen that the numerical crack tip speed cannot be computed for each time step but
only as the average value (dashed-line in Fig. 3) over the whole interval between two
instants of discrete crack advance:

Ay Ay
tmk—tmk7| A[(mk—’mk—»l)

a(r) ~ for 1€[tm, +lm] (24)

With Ay/Atc, fixed, it is obvious from eqn (24) that 4 can take on only discrete values,
because m, —my, _, is an integer. As an example, for Ay/Atc; = 1.5and @ = 0.25 ¢ a crack
tip jump of Ay takes place every six time steps (m,—m,_, = 6). For the same reason the
dynamic SIFs (19) are averaged with respect to time before entering the fracture criterion.
After the onset of crack growth (4 > 0)

K(1,) = .[ K(1)dt 25)

(tw—1,)
can be regarded to be the SIF consistent with the discretization as proposed by Koller et
al. (1992). Here t,, is the last instant of discrete crack advance. To evaluate the fracture
criterion at current time ¢,, > ¢,, the crack tip speed is required in eqns (19)—(23). But, only
available from eqn (24) for a time interval between two known instants of discrete crack
advance, ¢ has to be determined iteratively. Therefore at time t,, we first use for & the value
obtained for the interval [z, ., ]. Violation of condition (22) or (23) seemingly indicates
the necessity to add a new element. Thus, a new crack tip speed can now be computed for
the interval [¢,, , £,]. Only if condition (22) or (23) evaluated with this new crack tip speed
is violated, 7, is accepted to be a new instant ¢,  of discrete crack growth. Then a new
element having the direction ¢, determined from the fracture criterion is added to the crack
tip. Otherwise no crack advance takes place at that time and computations in the next time
step (2, ) are performed using the old value for ¢ again.

If, on the other hand, at z,, the time passed since the last crack tip jump becomes longer
than corresponds to the value currently in use for &, the crack tip speed is made topical
according to

. Ay
4 = min <a ——> (26)

TAHm —m,)

This takes place when the crack slows down.
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Fig. 4. One-sided propagation of straight crack loaded by plane waves.

5. NUMERICAL RESULTS

Before more general problems are treated the accuracy of the method is tested by
comparison with analytical solutions available for some simple situations. All numerical
computations reported in this paper are carried out with Poisson’s ratio of v = 0.25
(c. = \/SCT, cr = 0.92 ¢1). The quantity Ay/c, At characterizing the discretization should
be chosen from the interval {1, 2]. In all examples we start with a straight initial crack of
length 24, along the x;-axis. If not stated otherwise, it is discretized by 20 elements. No
other quantities have to be specified since the shear modulus can be related to a stress
amplitude of the loading, say ¢*, and the corresponding static stress intensity factor
K. = 0*/ma, serves to normalize the dynamic SIFs and the dynamic fracture toughness.

5.1. Comparison with analytical solutions

Analytical solutions are available for the dynamic propagation of straight semi-infinite
cracks loaded by constant stress (Freund, 1990). In case of a prescribed constant crack tip
speed these solutions are the dynamic SIFs at the running crack tip for mode I, II and 111
The ‘inverse’ problem for a mode I1I crack propagating according to the fracture condition
of a constant energy release rate (ideal brittle fracture) has been solved analytically by
Kostrov (1966) to give the unsteady motion of the crack tip in closed form. Numerically
we examine the one-sided propagation of a finite crack (Fig. 4) loaded at r = 0 by normal
incident plane waves carrying a jump of constant stress. After some time the stress field at
one tip of the finite crack is influenced by waves emanating at ¢ = 0 from the second crack
tip. Beyond this time the numerical results cannot be compared any longer to the analytical
solutions valid for semi-infinite cracks.

5.1.1. Constant crack tip speed. When the crack tip speed is prescribed, no fracture
criterion has to be employed. The dynamic SIFs are computed from eqns (19) and (25)

1.6

(A=
1 a=0.3cy

> o O e

Kt a)/Kga

te /a,
Fig. 5a. Mode I SIF at running crack tip.
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Fig. 5c. Mode 111 SIF at running crack tip.

whereas analytical solutions can be found in Freund (1990). For finite stationary cracks
{a@ = 0) analytical solutions taking into account a first interaction of the two crack tips are
available from Thau and Lu (1971). Figures 5(a)—(c) show the normalized SIFs for mode
I, II, and III vs dimensionless time for various values of the crack tip speed. In view of the
simplicity of the numerical method the results are quite satisfactory.

The number of time steps taken for averaging the SIFs in eqn (25) decreases with
increasing crack tip speed. Moreover, depending on the value of Ay/aAr this number of
time steps alternates from averaging period to averaging period. This results in some
scattering in the averaged SIFs which can be seen for high crack tip speed, especially in
Fig. 5(c). The mode II SIF is of minor importance since a real mixed mode loaded crack
immediately forms a kink and tends to propagate under pure mode I conditions, as is
known from experiments and reflected in the fracture criterion (22).

5.1.2. Constant energy release rate, mode III crack. For a constant energy release rate
the critical SIF is Ky, = Ky, (1 —(@/cr)?)"* (Kostrov, 1966). It enters the fracture criterion
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Fig. 6. Crack tip motion at constant energy release rate.

(23) and crack initiation takes place when Ky (¢; 0) = Ky;,.,. Figure 6 shows the crack tip
motion along the x;-axis computed via the algorithm described in Section 4 and the
analytical solution of Kostrov (1966) for various values of Kj;,. Also shown is the charac-
teristic (dashed-line) of the first disturbance emanating from the fixed crack tip. It forms
the boundary of the domain in the ¢,x,-plane where the analytical solution (semi-infinite
crack) is valid. Only for Ky, /K. > 0.794 this wave reaches the running crack tip, reducing
the SIF and possibly leading to crack arrest. For smaller values of Ky, the crack tip speed
asymptotically tends to the shear wave speed cr. Here 50 elements were used to discretize
the initial crack. Again the results are quite satisfactory and justify the application of the
numerical method to more general problems.

5.2. Curved crack growth

From now on any restrictions on the crack path are released and only the physically
more interesting situation of plane strain allowing for crack face contact is regarded. For
the dynamic fracture toughness Kp(¢) the relation shown in Fig. 7 which is typical for steel
and other moderately brittle materials is assumed (see measurements of Kalthoff and
Rosakis et al. reported by Dally et al., 1985). The steep increase in Kp(a) acts like a barrier
to a at about 0.4 ¢y. It results from energy dissipation by micromechanisms not considered
in detail on this macroscopic level. Because of that behaviour, the crack tip speed in the
following examples is limited to the range for which the direction of crack advance computed
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Fig. 7. Dynamic fracture toughness.
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Fig. 8. Crack path due to shear wave loading.

from fracture criterion (22) remains unique. For ¢ > 0.6 cg this uniqueness is lost (Freund,
1990).

5.2.1. Loading by plane shear wave. The initial crack is loaded by a normal incident
plane wave of a constant shear stress jump (mode II). When condition (22) is violated the
crack kinks by an angle of approximately 70° and then propagates in a slight bow (Fig. 8).
This behaviour is well known from experiments performed under static loading conditions
(Erdogan and Sih, 1963). Controlled by the fracture criterion the crack tends to propagate
under pure mode I conditions the direction of which approaches 45° with increasing distance
from the initial crack. Here no crack closure takes place. The crack tip speed after a short
period of acceleration reaches a constant value determined by the magnitude of loading.
For different magnitudes the resulting crack paths are nearly identical. So, dynamic effects
seem to have little influence on crack propagation in unbounded domains as long as the
direction of crack advance is unique. The zig-zag course of the crack path results from
determining the direction of crack advance before a new element of finite length is added
(‘forward scheme’).

5.2.2. Center of dilatation. To study dynamic crack propagation due to an inhomo-
geneous stress field the loading now is generated by a static center of dilatation given by
a"(x, 1) = e(x)H(¢) with

021 ¢) = —a*(‘“)l o (1 0) = +a*(‘i°>’, o2 (r, @) = 0. @7)
r ¥

Here the polar coordinates r and ¢ are related to the location of the r~*-singularity. When
a center of dilatation (e) is located beside the initial crack (Fig. 9) the crack is closed by
the negative radial stress and crack initiation takes place under pure mode Il conditions
with the typical kinking angle of about 70°. In this case the related contact problem has to
be solved as described in Section 3.2. When contact is neglected and material penetration
is admitted the computed crack path may differ totally from the ‘correct’ one (Fig. 9). In
both cases the kinking angle is the same, because K, = 0 for the initial crack independently
from considering crack face contact or not.

5.2.3. Center of compression. The stress field generated by a center of compression (e)
(Fig. 10) is opposite to that of a center of dilatation and leads to spiral crack growth around
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Fig. 10. Center of compression (e) in front of initial crack.

the nucleus of stress. Here the initial crack is closed by the negative circumferential stress.
Consideration or neglection of crack face contact, again results in different crack paths
obtained from the simulation. The ‘correct’ crack path again starts with an kinking angle
of 70° because of pure mode II crack initiation. The larger angle in the other case results
from a negative mode [ SIF which is physically meaningless.

Additional information about the fracture process can be obtained from the crack tip
speed and the dynamic mode I SIF. In the case of crack face contact correctly considered
in the simulation these quantities are shown vs the amount of crack advance in Figs 11 and
12. Although the crack tip speed takes on only ‘a few’ discrete values (see Section 4), the
short period of acceleration after crack initiation and the decrease in crack tip speed, leading
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to crack arrest, can clearly be seen. The strong decrease in crack tip speed results not only
from an increasing distance to the center of compression, but also from a change in geometry
due to crack growth. The simulation here was stopped at t = 27a,/c,.

6. CONCLUSIONS

A numerical method has been presented, which enables the simulation of dynamic
crack propagation under arbitrary loading conditions and along arbitrary crack paths.
Since penetration of the crack faces is kinematically inadmissible, the treatment of the
contact problem arising from crack closure is included in the procedure. Crack advance
starting from a given initial crack is determined from a fracture criterion motivated by
experimental observations. The method although being based on a rough approximation
of the crack tip motion gives rather accurate results when compared to analytical solutions.
In addition it proved to be a reasonable tool to investigate more general problems. In the
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from an increasing distance to the center of compression, but also from a change in geometry
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crack propagation under arbitrary loading conditions and along arbitrary crack paths.
Since penetration of the crack faces is kinematically inadmissible, the treatment of the
contact problem arising from crack closure is included in the procedure. Crack advance
starting from a given initial crack is determined from a fracture criterion motivated by
experimental observations. The method although being based on a rough approximation
of the crack tip motion gives rather accurate results when compared to analytical solutions.
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APPENDIX B: AUXILIARY FUNCTIONS
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= Functions V,.(...)and X, (...) are regular for r —» 0!
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